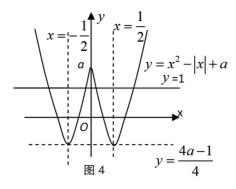
应考方略

数学有数

 $a < \frac{5}{4}$. 故答案为 $(1, \frac{5}{4})$.

点评:本小 题主要考查的图像与性质、 不等式的解法, 着重考查了数学思 结合的数思



D. 8

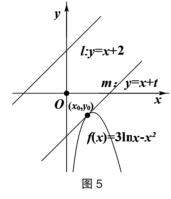
例 5. (2017 年衡水一调(理)) 若实数 a,b,c,d 满足($b+a^2-3\ln a$)²+(c-d+2)²=0,则(a-c)²+(b-d)² 的最小值为(

A.
$$\sqrt{2}$$
 B. 2 C. $2\sqrt{2}$

解析:因为数 a,b,c,d 满足 $(b+a^2-3\ln a)^2+(c-d+2)^2=0$,所以 $b+a^2-3\ln a=0$,c-d+2=0,设 b=y,a=x,则有 $y=3\ln x-x^2$,设 d=y,c=x,则有 y=x+2,所以 $(a-c)^2+(b-d)^2$ 就是曲线 $y=3\ln x-x^2$ 与直线 y=x+2 之间的最小距离的平方,如图 5,作 $y=3\ln x-x^2$ 的切线 m:y=x+t,设切点为

 (x_0, y_0) ,则有 $1 = \frac{3}{x_0} - 2x_0$,解 得 $x_0=1$, $x_0=-\frac{3}{2}$ (含去),把 $x_0=1$ 代入 $y=3\ln x-x^2$ 得 $y_0=-1$,所以切点为(1,-1),则切点为(1,-1)到直线 x-y+2=0 的 距离 $d=\frac{|1+1+2|}{\sqrt{2}}=2\sqrt{2}$,所以 $d^2=8$, $(a-c)^2+(b-d)^2$

的最小值为 8. 故选 D.



点评:利用导数研究曲线在某点的切线方程及其应用,通过作出函数图像,把"数"的问题转化"形"的问题.

三、利用数形结合的思想解决方程与不等式的问题

不等式所涉及到的复杂变换技巧和过于形式化的知识特点, 使不等式的学习便得抽象和难于理解.如果方程或不等式两边的 表达式有明显的几何意义,或通过某种方式可以与图形建立联 系,可将方程或不等式所表达的抽象数量关系转化为图形的位 置或度量关系加以解决,使得原问题直观且易于理解,从而所 讨论问题得到解决.

例 6. 若存在正数 x 使 2*(x-a)< 1 成立,则 a 的取值范围是 ()

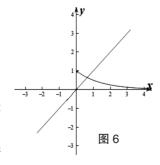
A.
$$(-\infty, +\infty)$$

B.
$$(-2,+\infty)$$

C.
$$(0,+\infty)$$

D.
$$(-1,+\infty)$$

解析: 因为 2*>0,所以由 2*(x-a) <1 得 x-a< $\frac{1}{2^x}$ =2**,在坐标系中,作出函数 f(x)=x-a,g(x)=2** 的图像,如图6,当 x>0 时,g(x)=2**<1,所



以如果存在 x>0,使 $2^x(x-a)<1$,则有-a<1,即 a>-1,故选 D.

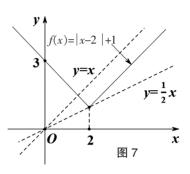
点评: 本题运用数形结合思想,通过画出函数的图像,观察得出.

例 7. 已知函数 f(x) = |x-2| + 1, g(x) = kx. 若方程 f(x) = g(x)有两个不相等的实根,则实数 k 的取值范围是()

A.
$$(0, \frac{1}{2})$$
 B. $(\frac{1}{2}, 1)$ C. $(1, 2)$ D. $(2, +\infty)$

解析: 由已知, 函数 f(x)=|x-2|+1, g(x)=kx 的图像有两个公共点, 画图 (如图7) 可知当直线介于 $l_1:y=\frac{1}{2}x$, $l_2:y=x$ 之间时, 符合题意. 故选 B.

点评:本题运用数 形结合思想,通过画出 函数的图像,观察得出.



四、利用数形结合的思想解决三角函数问题

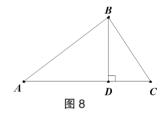
有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于特殊三角形或三角函数图像来处理,数形结合思想是处理三角函数问题的重要方法.

例 8. $\triangle ABC$ 的内角 A ,B ,C 的对边分别为 a,b ,c , 若 $\cos A = \frac{4}{5}$, $\cos C = \frac{5}{13}$, a=1 , 则 b=_____.

解析:过点 B 作 $BD \perp AC$ 交 AC 于点 D,如图 8,因为

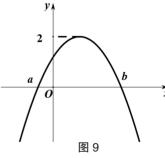
$$\cos A = \frac{4}{5}$$
 , $\cos C = \frac{5}{13}$, 可设 $BD = 12t$, 则 $AB = 20t$, $AD = 16t$, $BC = 13t$, $CD = 5t$, 又 $BC = a = 1$, 所以 $t = \frac{1}{13}$, 所以

 $b=A C=21t=\frac{21}{13}$.



点评:本题巧妙的构造图形,然后运用解直角三角形和 勾股定理知识解决问题.

例 9. (2017 年上海五校联考) 已知函数 $f(x)=A \sin (2x+\varphi)(0 < \varphi < \frac{\pi}{2}, A > 0)$ 部分图像如图 9 所示,且 f(a)=f(b)=0,对不同的 $x_1,x_2 \in [a,b]$,若 $f(x_1)=f(x_2)$,有 $f(x_1+x_2)=\sqrt{3}$,则 $\varphi=$



解析: 由图像对称性

可知 A=2, $T=\pi$,由于 f(a)=f(b)=0,所以 $b-a=\frac{T}{2}=\frac{\pi}{2}$, $\sin(a+b+\phi)=1$,所以 $a+b+\phi=\frac{\pi}{2}$,又 $x_1,x_2\in[a,b]$,且 $f(x_1)=f(x_2)$,所以 x_1+